Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biomolecules ; 14(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38540715

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by cognitive decline and neuropathological hallmarks, including ß-amyloid (Aß) plaques, Tau tangles, synaptic dysfunction and neurodegeneration. Emerging evidence suggests that abnormal iron (Fe) metabolism plays a role in AD pathogenesis, but the precise spatial distribution of the Fe and its transporters, such as ferroportin (FPN), within affected brain regions remains poorly understood. This study investigates the distribution of Fe and FPN in the CA1 region of the human hippocampus in AD patients with a micrometer lateral resolution using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). For this purpose, we visualized and quantified Fe and FPN in three separated CA1 layers: stratum molecular-radial (SMR), stratum pyramidal (SP) and stratum oriens (SO). Additionally, chromogenic immunohistochemistry was used to examine the distribution and colocalization with Tau and Aß proteins. The results show that Fe accumulation was significantly higher in AD brains, particularly in SMR and SO. However, FPN did not present significantly changes in AD, although it showed a non-uniform distribution across CA1 layers, with elevated levels in SP and SO. Interestingly, minimal overlap was observed between Fe and FPN signals, and none between Fe and areas rich in neurofibrillary tangles (NFTs) or neuritic plaques (NP). In conclusion, the lack of correlation between Fe and FPN signals suggests complex regulatory mechanisms in AD Fe metabolism and deposition. These findings highlight the complexity of Fe dysregulation in AD and its potential role in disease progression.


Alzheimer Disease , Cation Transport Proteins , Laser Therapy , Humans , Alzheimer Disease/metabolism , Iron/metabolism , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology
2.
Talanta ; 197: 413-421, 2019 May 15.
Article En | MEDLINE | ID: mdl-30771955

Laser ablation inductively coupled plasma - mass spectrometry (LA-ICP-MS) is proposed for a better understanding of metals and proteins distribution in micrometre structures of human brain tissues. Simultaneous absolute quantitative imaging of Fe and ferroportin (FPN), in 5 µm thick tissue sections of the stratum pyramidale of hippocampus CA1 region, was carried out for Alzheimer disease (AD) patients and healthy controls (HC). For the imaging of FPN by LA-ICP-MS, antibodies were labelled via carbodiimide crosslinking with fluorescent gold nanoclusters (AuNCs) of 2.2 nm diameter, enabling a high amplification (314 gold atoms per NC). Laboratory made gelatin standards containing Fe and Au were used for LA-ICP-MS calibration. Results showed that iron presents an increased concentration in AD donors compared with HC donors, whereas similar concentrations of FPN in AD donors with respect to HC donors were obtained. The average absolute FPN concentrations in selected areas obtained with the proposed AuNCs method were compared with the levels obtained by densitometric analysis with a traditional IHC approach, observing a similar trend in all cases.


Alzheimer Disease/metabolism , Cation Transport Proteins/analysis , Hippocampus/chemistry , Iron/analysis , Laser Therapy , Optical Imaging , Case-Control Studies , Humans , Mass Spectrometry
...